3.191 \(\int \frac{\cos ^4(c+d x) (A+C \sec ^2(c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=243 \[ -\frac{(21 A+16 C) \sin (c+d x)}{64 d \sqrt{a \sec (c+d x)+a}}+\frac{(107 A+112 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{64 \sqrt{a} d}-\frac{\sqrt{2} (A+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{(43 A+48 C) \sin (c+d x) \cos (c+d x)}{96 d \sqrt{a \sec (c+d x)+a}}+\frac{A \sin (c+d x) \cos ^3(c+d x)}{4 d \sqrt{a \sec (c+d x)+a}}-\frac{A \sin (c+d x) \cos ^2(c+d x)}{24 d \sqrt{a \sec (c+d x)+a}} \]

[Out]

((107*A + 112*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(64*Sqrt[a]*d) - (Sqrt[2]*(A + C)*Ar
cTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) - ((21*A + 16*C)*Sin[c + d*x])/(6
4*d*Sqrt[a + a*Sec[c + d*x]]) + ((43*A + 48*C)*Cos[c + d*x]*Sin[c + d*x])/(96*d*Sqrt[a + a*Sec[c + d*x]]) - (A
*Cos[c + d*x]^2*Sin[c + d*x])/(24*d*Sqrt[a + a*Sec[c + d*x]]) + (A*Cos[c + d*x]^3*Sin[c + d*x])/(4*d*Sqrt[a +
a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.728525, antiderivative size = 243, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {4087, 4022, 3920, 3774, 203, 3795} \[ -\frac{(21 A+16 C) \sin (c+d x)}{64 d \sqrt{a \sec (c+d x)+a}}+\frac{(107 A+112 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{64 \sqrt{a} d}-\frac{\sqrt{2} (A+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{(43 A+48 C) \sin (c+d x) \cos (c+d x)}{96 d \sqrt{a \sec (c+d x)+a}}+\frac{A \sin (c+d x) \cos ^3(c+d x)}{4 d \sqrt{a \sec (c+d x)+a}}-\frac{A \sin (c+d x) \cos ^2(c+d x)}{24 d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^4*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((107*A + 112*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(64*Sqrt[a]*d) - (Sqrt[2]*(A + C)*Ar
cTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) - ((21*A + 16*C)*Sin[c + d*x])/(6
4*d*Sqrt[a + a*Sec[c + d*x]]) + ((43*A + 48*C)*Cos[c + d*x]*Sin[c + d*x])/(96*d*Sqrt[a + a*Sec[c + d*x]]) - (A
*Cos[c + d*x]^2*Sin[c + d*x])/(24*d*Sqrt[a + a*Sec[c + d*x]]) + (A*Cos[c + d*x]^3*Sin[c + d*x])/(4*d*Sqrt[a +
a*Sec[c + d*x]])

Rule 4087

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx &=\frac{A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{\int \frac{\cos ^3(c+d x) \left (-\frac{a A}{2}+\frac{1}{2} a (7 A+8 C) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{\int \frac{\cos ^2(c+d x) \left (\frac{1}{4} a^2 (43 A+48 C)-\frac{5}{4} a^2 A \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{12 a^2}\\ &=\frac{(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt{a+a \sec (c+d x)}}-\frac{A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{\int \frac{\cos (c+d x) \left (-\frac{3}{8} a^3 (21 A+16 C)+\frac{3}{8} a^3 (43 A+48 C) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{24 a^3}\\ &=-\frac{(21 A+16 C) \sin (c+d x)}{64 d \sqrt{a+a \sec (c+d x)}}+\frac{(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt{a+a \sec (c+d x)}}-\frac{A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{\int \frac{\frac{3}{16} a^4 (107 A+112 C)-\frac{3}{16} a^4 (21 A+16 C) \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{24 a^4}\\ &=-\frac{(21 A+16 C) \sin (c+d x)}{64 d \sqrt{a+a \sec (c+d x)}}+\frac{(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt{a+a \sec (c+d x)}}-\frac{A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+(-A-C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx+\frac{(107 A+112 C) \int \sqrt{a+a \sec (c+d x)} \, dx}{128 a}\\ &=-\frac{(21 A+16 C) \sin (c+d x)}{64 d \sqrt{a+a \sec (c+d x)}}+\frac{(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt{a+a \sec (c+d x)}}-\frac{A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{(2 (A+C)) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}-\frac{(107 A+112 C) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{64 d}\\ &=\frac{(107 A+112 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{64 \sqrt{a} d}-\frac{\sqrt{2} (A+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}-\frac{(21 A+16 C) \sin (c+d x)}{64 d \sqrt{a+a \sec (c+d x)}}+\frac{(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt{a+a \sec (c+d x)}}-\frac{A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.764234, size = 160, normalized size = 0.66 \[ \frac{\tan (c+d x) \left (\cos (c+d x) \sqrt{1-\sec (c+d x)} \left ((86 A+96 C) \cos (c+d x)+48 A \cos ^3(c+d x)-8 A \cos ^2(c+d x)-63 A-48 C\right )+(321 A+336 C) \tanh ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )-192 \sqrt{2} (A+C) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )\right )}{192 d \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^4*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(((321*A + 336*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]] - 192*Sqrt[2]*(A + C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]
] + Cos[c + d*x]*(-63*A - 48*C + (86*A + 96*C)*Cos[c + d*x] - 8*A*Cos[c + d*x]^2 + 48*A*Cos[c + d*x]^3)*Sqrt[1
 - Sec[c + d*x]])*Tan[c + d*x])/(192*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.379, size = 1406, normalized size = 5.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/3072/d/a*(321*A*sin(d*x+c)*cos(d*x+c)^3*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/
cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*2^(1/2)+336*C*sin(d*x+c)*cos(d*x+c)^3*arctanh(1/2*2^(1/2)*(-2
*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*2^(1/2)+384*A*(-
2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x
+c))*sin(d*x+c)*cos(d*x+c)^3+963*A*sin(d*x+c)*cos(d*x+c)^2*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*2^(1/2)+384*C*(-2*cos(d*x+c)/(cos(d*x+c)+1))
^(7/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)^3
+1008*C*sin(d*x+c)*cos(d*x+c)^2*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c)
)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*2^(1/2)+1152*A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*ln(-(-(-2*cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)^2+963*A*sin(d*x+c)*cos(d*x+
c)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+
1))^(7/2)*2^(1/2)+1152*C*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d
*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)^2+1008*C*sin(d*x+c)*cos(d*x+c)*arctanh(1/2*2^(1/2)*(-2*c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*2^(1/2)+1152*A*(-2
*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+
c))*sin(d*x+c)*cos(d*x+c)+321*A*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c)
)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*2^(1/2)*sin(d*x+c)+1152*C*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*ln(-(-(-
2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)+336*C*arctanh(1/
2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(
7/2)*sin(d*x+c)+384*A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+
c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)+384*C*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(7/2)*ln(-(-(-2*cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)-768*A*cos(d*x+c)^8+896*A*cos(d*x+c)^7-1504*A*c
os(d*x+c)^6-1536*C*cos(d*x+c)^6+2384*A*cos(d*x+c)^5+2304*C*cos(d*x+c)^5-1008*A*cos(d*x+c)^4-768*C*cos(d*x+c)^4
)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{4}}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^4/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [A]  time = 8.69633, size = 1523, normalized size = 6.27 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/384*(192*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/c
os(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2
*cos(d*x + c) + 1)) - 3*((107*A + 112*C)*cos(d*x + c) + 107*A + 112*C)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sq
rt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) +
 1)) + 2*(48*A*cos(d*x + c)^4 - 8*A*cos(d*x + c)^3 + 2*(43*A + 48*C)*cos(d*x + c)^2 - 3*(21*A + 16*C)*cos(d*x
+ c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), -1/192*(3*((107*A + 112*
C)*cos(d*x + c) + 107*A + 112*C)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*
sin(d*x + c))) - (48*A*cos(d*x + c)^4 - 8*A*cos(d*x + c)^3 + 2*(43*A + 48*C)*cos(d*x + c)^2 - 3*(21*A + 16*C)*
cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - 192*sqrt(2)*((A + C)*a*cos(d*x + c) + (A
+ C)*a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(
a*d*cos(d*x + c) + a*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 14.3068, size = 1418, normalized size = 5.84 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/384*(192*sqrt(2)*(A*sqrt(-a) + C*sqrt(-a))*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)
^2 + a))^2)/(a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - 3*(107*A + 112*C)*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - s
qrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) + 3*(10
7*A + 112*C)*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) -
3)))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - 4*sqrt(2)*(1599*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan
(1/2*d*x + 1/2*c)^2 + a))^14*A*sqrt(-a) + 816*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2
+ a))^14*C*sqrt(-a) - 18219*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^12*A*sqrt(-a
)*a - 12528*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^12*C*sqrt(-a)*a + 91467*(sqr
t(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*A*sqrt(-a)*a^2 + 64752*(sqrt(-a)*tan(1/2*
d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*C*sqrt(-a)*a^2 - 177735*(sqrt(-a)*tan(1/2*d*x + 1/2*c)
- sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*sqrt(-a)*a^3 - 124848*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(
1/2*d*x + 1/2*c)^2 + a))^8*C*sqrt(-a)*a^3 + 100413*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*
c)^2 + a))^6*A*sqrt(-a)*a^4 + 70032*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C*
sqrt(-a)*a^4 - 26881*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*sqrt(-a)*a^5 -
19152*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*C*sqrt(-a)*a^5 + 3321*(sqrt(-a)*
tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*sqrt(-a)*a^6 + 2640*(sqrt(-a)*tan(1/2*d*x + 1/
2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*sqrt(-a)*a^6 - 205*A*sqrt(-a)*a^7 - 144*C*sqrt(-a)*a^7)/(((sqr
t(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(
-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^4*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d